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Introduction

• Who are we?

• General themes:

• Context and purpose — what are we trying to do?

• Looking at data

• Using statistical models

• Questions (and some answers)

2 / 59

Summary

These slides deal with some basic statistical concepts that are relevant to current thermal

comfort research. Topics include:

• Normal distributions (univariate and bivariate)

• The method of least squares

• Linear regression

• Fitted model and meaning

• Computer output, diagnostics, note on R2

• Regression dilution

• Ordered categorical data

• Summarising and plotting

• Regression models

• Looking at several variables

3 / 59

3



Normal distributions 4 / 59

Univariate normal: X ∼ N (µ, σ2 )

µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ
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The probability density function of X is

f(x) =
1

σ
√
2π

e−
1

2
(x−µ

σ
)2 , −∞ < x < ∞

There are two parameters: µ and σ,

which are the mean and standard deviation of X .

From these, the probability of any event (concerning X) and be calculated
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Measurements of span for 1200 men
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Histogram of data
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With Normal curve added

The shaded area denotes the proportion of men with span between 73 and 74 inches

If we have data that we know are from a normal distribution, the summary statistics: sample size, mean
and standard deviation tell us all we need to know.

Here they are: n = 1200 x̄ = 69.94 sx = 3.14
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Bivariate normal: (X, Y ) ∼ BVN (µ,Σ )

Joint probability density function of X and Y :

f(x, y) =
1

2πσxσy
√

1− ρ2
exp

{

− 1

2(1 − ρ2)
Q

}

where
Q =

(

x− µx

σx

)

2

− 2ρ

(

x− µx

σx

)(

y − µy

σy

)

+

(

y − µy

σy

)

2

There are five parameters µx, σx, µy, σy and ρ

which are the means and standard deviations of X and Y and their correlation coefficient.

From these, any probabilities (concerning X and Y ) can be calculated.

Contours of equal probability density are ellipses in the (x, y ) plane.
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Bivariate data: length and head circumference for 382 baby boys

Scatter plot and summary statistics:
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Here are some ellipses of constant probability density
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50% and 95% probability ellipses

— using parameter values estimated from the boys data
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Here they are again with the data superimposed
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All marginal and conditional distributions are Normal

Variable Mean Standard Deviation

X µx σx

Y µy σy

Y given x µy + ρ
σy
σx

(x− µx) σy

√

1− ρ2

X given y µx + ρ
σx
σy

(y − µy) σx

√

1− ρ2

And all regressions are straight lines.

The mean of Y given x is a straight line (as a function of x)

— it goes through (µx, µy) and has slope ρ σy/σx

The standard deviation of Y given x does not depend on x

Similarly for X given y
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The method of least squares 12 / 59

Univariate data

Question: Given n measurements

x1, x2, . . . , xn, what value of a is closest

to them in the sense of least squares? 15 20 25 30 35

i.e., what value of a minimises (x1 − a)2 + (x2 − a)2 + · · ·+ (xn − a)2 ?

Answer: the mean value

a = (x1 + x2 + . . .+ xn)/n 15 20 25 30 35

This is pure geometry.

There is no statistical model or distribution required.

13 / 59
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Bivariate data

Question: Given n bivariate measurements (x1, y1), (x2, y2), . . . , (xn, yn),
what values of a and b give the straight line y = a + bx that is closest to them

in the sense of least squares?

Answer: It depends what least squares you mean. For example:

(a) Minimise (y1 − a− bx1)
2 + (y2 − a− bx2)

2 + · · ·+ (yn − a− bxn)
2

then b = rxysy/sx and a = ȳ − bx̄

(b) Minimise (x1 − a− by1)
2 + (x2 − a− by2)

2 + · · ·+ (xn − a− byn)
2

then b = sx/rxysy and a = ȳ − bx̄

(c) Minimise the sum of squares of the perpendicular distances from (xi, yi) to the line.

then b = D +
√

1 +D2 where D =
s2y − s2x
2rxysxsy

and a = ȳ − bx̄

Again, this is pure geometry, requiring no statistical model.
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Here are the three lines for the boys data
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What do these lines tell us and what are they for?

It transpires that

(a) shows the average y for a given x (as a function of x)

(b) shows the average x for a given y

(c) shows the direction of greatest variance of all linear combinations

of x and y. It is called the first principal component
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Here are the three lines with the bivariate normal probability ellipses
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The least orthogonal squares (black) line, or first principal component, is also the direction

of the major axis of the ellipses.
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A problem of scales

Suppose we change the units of measurement of x or y. Here are the boys data again but with

length now measured in inches!
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What happens to the three lines?
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We see that:

For cases (a) and (b) the least squares line is the same as before

— but expressed in the new units.

But not so for case (c). We get an essentially different line!

The principal components depend on the scales of measurement of the variables.

For this reason, in principal components analysis the variables are often

standardised to have unit standard deivation before applying the method. But this

affects the interpretation.
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Normal distributions and least squares

When measurements come from a Normal distribution (univariate or multivariate) we can use

the method of maximum likelihood to estimate the population parameters. These estimates

turn out to be the sample means, standard deviations and and pairwise correlation coefficients.

Furthermore, for location parameters in linear models, the maximum likelihood estimates are

the same as the least squares estimates.

For example

• For univariate observations from a Normal population, the sample mean is the maximum likelihood

estimate of the population mean

• For bivariate data where yi is from a normal population with mean α+ βxi and standard deviation σ
then the maximum likelihood estimates of α and β are the same as the least squares estimates in

example (a) above.

Dispersion parameters are usually estimated from the residual scatter.

21 / 59
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Linear regression 22 / 59

Example: birth weight and gestational age for 382 baby boys

Scatter plot and summary statistics:
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Fit a linear regression model with
y = birth weight and

x = gestational age − 40 weeks.
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Computer output from R software

Call: lm(formula = Bwt ˜ g.age)

Residuals:

Min 1Q Median 3Q Max

-1.23069 -0.31311 -0.00296 0.28962 1.30962

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.44069 0.02453 140.24 <2e-16 ***
g.age 0.18515 0.01449 12.78 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.4732 on 380 degrees of freedom

Multiple R-squared: 0.3005, Adjusted R-squared: 0.2987

F-statistic: 163.2 on 1 and 380 DF, p-value: < 2.2e-16

24 / 59
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What is the fitted model?

This is given by the two coefficients and the residual standard deviation

The intercept formally estimates the mean y when x = 0, in this case, the mean birth
weight when gestational age is 40 weeks.a

The slope estimates the change in average y when x increases by 1 unit, in this case the

change in mean birth weight when gestational age increases by 1 week.

The residual standard deviation estimates the standard deviation of y when x is fixed, in
this case the standard devation of birth weights for boys with the same gestational age.

Birth weights of babies with gestational age x+ 40 weeks have estimated

mean 3.440 + 0.185x kg and standard deviation 0.473 kg.

Don’t forget to quote the residual standard deviation! We would also normally present the sample size,
standard errors, residual degrees of freedom, and other diagnostics where appropriate.

aOften the intercept term is not physically meaningful by itself (e.g., if x = gestational age then x = 0 is not possible

in practice) but it is when combined with other parameters.
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Data with fitted mean line
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Compare the residual standard deviation 0.47 kg
with the marginal standard deviation 0.56 kg

— controlling for gestational age has reduced the scatter about the mean

— formally the marginal standard deviation of y (0.56 kg)
is the residual standard devation for the “null” model
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Hypothesis tests

The output gives 3 P-values, relating to:

• (intercept), testing the null hypothesis that when x = 0 the mean y equals 0

— usually this is of no interest

• g.age, testing the null hypothesis that the (true) regression slope is 0

— this is of interest if that null hypothsis is

• F-statistic, testing the null hypothesis that the mean y does not depend on x (this is called the
“null” model)

— with just one explanatory variable, this is equivalent to the previous test, and the P-value

is the same (note 12.782 = 163.3).

— it is also equivalent to testing the hypothesis that the (true) correlation coefficient is zero.

As always, their relevance depends on the context.

With more than one explanatory variable, P-values for individual coefficients are harder to interpret

because they are conditional on other terms in the regression model. The null model says that the mean y
does not depend on any of the x variables.
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Diagnostic plots from R output
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What use is R2 ?

Here (with just one explanatory variable) R2 is the square of the correlation coefficient between x
and y (note: 0.552 = 0.30).

Formally, R2 measures the proportion of the variance of y that is

“explained” by x. This interpretation extends to regression with

several explanatory variables.

But:

• variance not explained is more important than variance explained

• knowing the amount of variation not explained is more informative than knowing the

proportion of it

• the residual standard deviation tells us explicitly how much variation in y is left over after

accounting for x. We need to know this!
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What use is R2 ? (example)

Here are simulated values of Y |x from Normal distributions with

E(Y |x) = −2.25 + 0.25x and var(Y |x) = 1

plus the fitted least squares line, where x varies between 16 and 34
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 = 0.65

least squares fit   y =  −2.68  +  0.27 x ,    rsd =  1
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What use is R2 ? (example continued)

Here are the results using just the data where x is between 19 and 31:

15 20 25 30 35

0
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8

least squares fit   y =  −2.78  +  0.27 x ,    rsd =  0.97

R
2
 = 0.44

The fitted line and residual standard deviation are practically the same,

but R2 has reduced from 0.65 to 0.44.
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What use is R2 indeed!

In many applications, R2 is of little use.

Often, R2 differs between samples just because

x varies by different amounts.

A higher value of R2 does not mean that

the fitted linear regression is “better”.

On the other hand, a smaller residual standard deviation

does mean that y varies less when x is fixed.

32 / 59
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Within- and between-group slopes

Here is a scatter plot of some
bivariate data showing a linear

regression relationship with a slope

of about 0.29.
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In fact the data are from three

groups with a common
within-group slope of 0.1 but with

different means.

Care is needed when interpreting

regression slopes for data that are
pooled across groups.
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Regression dilution — what is it?

Suppose we wish to fit a straight line mean(y) = α + βx
to describe how the mean of an outcome variable y
depends on a predictor (or explanatory) variable x.

But we cannot observe x precisely. Instead we observe w = x+ e
where e is a random error with mean 0.

Then the slope of the regression of y on the observed w does not equal β.

• the regression of y on x has slope β =
cov(x, y)

var(x)

• the regression of y on w has slope
cov(w, y)

var(w)
=

cov(x+ e, y)

var(x+ e)

if e is independent of x and y this equals
cov(x, y)

var(x) + var(e)
=

β

1 + var(e)/var(x)
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Regression dilution — does it matter?

Yes – if we want to estimate or test hypotheses about the parameter β

No – if we want to predict or estimate the mean of y

– or if we want to use w as an operational measurement

Example from occupational epidemiology: does cumulative exposure to carbon black in

factories cause respiratory morbidity?

y = measured lung function (FEV1)

x = exposure to carbon black over time

w = measurements of inhalable carbon black made on several days

We might want to test the hypothesis that β = 0.

We can’t measure x directly, and regression of y on w might fail to reveal an important effect.
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Regression dilution — what can we do about it?

Approaches:

1. Do nothing (this has advantages)

2. Get better measurents of x

3. Use the regression of y on w and apply a correction factor to the estimated slope

4. Look at the literature on “errors in variables” models.

Without further data, errors in variables models are not identifiable, so assumptions about the

measurement error variances are needed.
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Ordered Categorical Data 37 / 59

Ordinal outcome variables

Examples: Severity of disease (absent, mild, moderate, severe),

Temperature sensitivity vote (At present I feel: cold, cool, slightly cool, neutral, slightly warm,

warm, hot)

Nature: Each individual (unit) is assigned to one of several ordered categories. The difference

between adjacent categories does not necessarily have the same meaning at different points

on the scale.

Approaches:

1. Create quantitative data by assigning a numerical score to each category.

2. Imagine we have coarsely grouped data from an underlying continuous distribution; again

use methods for quantitative data.

3. Reduce to binary variables by merging categories and use methods for binary data.

4. Treat directly as ordinal — e.g., using proportional odds or cumulative link models.
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Example: ASHRAE temperature votes

Illustrative data showing 472 temperature sensation votes (ASHRAE scale) plotted against actual

temperatures in ◦C:
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At present I feel:
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How does ASHRAE score depend on temperature?
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Another version with box plots and summary statistics
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1

2

3

4

5

6

7

Cold

Cool

Slightly cool

Neutral

Slightly warm
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At present I feel:

Temperature (deg C)
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24.76

26.09

26.36

27.33

30.55

32.25

2.79

2.25

2.91

2.52

3.13

3.13

2.54

n mean s.d.

This shows how temperature varies for each ASHRAE score.
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Another plot with a regression line added
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n mean s.d.

Blue line: least squares fit y = −1.60 + 0.21x residual s.d. = 1.20
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Another plot with some mean ASHRAE scores added
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n mean s.d.

Red dots show the mean ASHRAE score (regarded as a quantitative variable)

for temperatures in each 1◦C interval,

with tails grouped below 23.5◦C and above 32.5◦C
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. . . now with a lowess line
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Pink line: lowess with smoothing span f = 0.35
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. . . and now all together
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At present I feel:

Temperature (deg C)
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27.33

30.55

32.25

2.79

2.25

2.91

2.52

3.13

3.13

2.54

n mean s.d.

Pink line: lowess with smoothing span f = 0.35

Blue line: least squares fit y = −1.60 + 0.21x residual s.d. = 1.20

— a straight line looks like a poor description
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The same data re-plotted by House and Room type
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Data for 17 houses

Red circles: Living room

Blue crosses: Bed room

Look for patterns

between houses

and rooms

Features seen

from the pooled

data might be

due to differences

between houses

or rooms . . .

. . . or to other

uncotrolled

factors

45 / 59

22



Proportions and cumulative proportions

Temperature Proportion voting:

range ◦C 1, 2 3 4 5 6, 7 n

≤ 22 0.27 0.40 0.17 0.13 0.03 30

22 – 24 0.21 0.26 0.36 0.14 0.03 58
24 – 26 0.13 0.30 0.36 0.13 0.09 101

26 – 28 0.14 0.28 0.36 0.18 0.04 107
28 – 30 0.00 0.25 0.34 0.30 0.10 67

30 – 32 0.05 0.15 0.14 0.24 0.42 59

> 32 0.00 0.06 0.04 0.02 0.88 50

≥ 1 ≥ 3 ≥ 4 ≥ 5 ≥ 6

≤ 22 1.00 0.73 0.33 0.17 0.03
22 – 24 1.00 0.79 0.53 0.17 0.03

24 – 26 1.00 0.87 0.57 0.22 0.09

26 – 28 1.00 0.86 0.58 0.21 0.04
28 – 30 1.00 1.00 0.75 0.40 0.10

30 – 32 1.00 0.95 0.80 0.66 0.42
> 32 1.00 1.00 0.94 0.90 0.88

46 / 59

Plotting ordinal data

When there are more then 2 ordered categories, proportions for intermediate categories can be

hard to interpret. It is more logical to plot cumulative proportions— e.g., as given in the lower

table above.
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3 or greater

Proportion voting:

Temperature (deg C)

This shows the

proportion voting y or
greater for y = 3, 4, 5

and 6 for each 2◦C

temperature interval.

Vertical distances
between the curves

give the proportions in

the upper table.
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Binary outcome variables — logistic and probit regression

Define an outcome variable y which equals 1 when the ASHRAE vote is 5, 6 or 7 (i.e., ”I feel slightly warm

or warmer”) and 0 when the preference vote is below 5 (i.e., “I feel neutral or cooler”). Let p denote the

probability that y = 1 when the temperature is x.

A logistic regression equation is of the form

log
( p

1− p

)

= α+ βx

That is, the log odds of slightly warm or warmer changes with temperature in a straight line with intercept

α and slope β.

This equation may be written to express p as a function of x:

p =
eα+βx

1 + eα+βx

which is not a straight line, but an S-shaped (or reverse S-shaped) curve.
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Fitted logistic regression curve
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Blue dots denote observed responses

Red dots denote observed proportions of 1s in 1
◦C intervals

Solid black line is the fitted logistic curve with α = −9.63 and β = 0.33
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Probit regression models

These are very similar to logistic regression models. The model equations are of the form

Φ−1(p) = γ + δx and p = Φ(γ + δx)

where Φ(z) is the standard Normal distribution function.

In practice there is very little difference between logistic and probit models in terms of how well they fit data; the main

differences are in the interpretation of the parameters. Here is the previous graph again, with the logistic curve in

black and a fitted probit curve (purple broken line), with γ = −5.59 and δ = 0.19.
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Ordinal regression models

Let y denote the ASHRAE score, which is an ordinal variable taking values 1, 2, 3, 4, 5, 6 or 7.

Let qk denote the probability that y ≥ k, for k = 1, 2, . . . , 7.

For example, q5 is the probability that the individual feels sightly warm or warmer. And of course q1 = 1.

An ordinal regression model will specify how qk depends on explanatory variables such as actual

temperature, for each value of k.

Often a proportional odds model is used, where the coefficient β is the same for every value of k.

These models are an extension of models for binary responses (when y takes only two values).
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Fitted proportional odds regression curves

20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

Temperature (deg C)

P
ro

p
o

rt
io

n

Fitted proportions voting k or greater for k = 2,3,4,5,6,7

Hot

W
ar

m
 o

r H
ot

S
lig

ht
ly
 w

ar
m

 o
r w

ar
m

er

N
eu

tra
l o

r w
ar

m
er

S
lig

ht
ly
 c

oo
l o

r w
ar

m
er

Cool o
r w

arm
er

Cold or warmer

52 / 59

Fitted proportions voting “comfortable” at each temperature
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Proportion voting between
 Slightly cool and Slightly warm

Proportion voting
 Neutral

The blue curve here is the vertical distance between the curves “Slightly warm or warmer” and “Neutral or
warmer” in the previous figure.

Likewise, the black curve is the vertical distance between the curves “Warm or Hot” and “Slightly cool or

warmer” in the previous figure. Red dots are observed proportions.
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Another version, but using a non-proportional odds model
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The black curve is the vertical distance between the fitted logistic curves for “Warm or Hot” and “Slightly
cool or warmer”, but now with different intercepts and slopes. Red dots are observed proportions.
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Looking at several variables 55 / 59

Example: air quality data

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

7 23 299 8.6 65 5 7

...................................

151 14 191 14.3 75 9 28

152 18 131 8.0 76 9 29

153 20 223 11.5 68 9 30

Daily readings of the following air quality values for May 1, 1973 (a Tuesday) to September 30, 1973.

’Ozone’: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island
’Solar.R’: Solar radiation in Langleys in the frequency band 4000-7700 Angstroms from 0800 to 1200 hours at Central Park
’Wind’: Average wind speed in miles per hour at 0700 and 1000 hours at La Guardia Airport
’Temp’: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport.
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Time series plots with lowess smoothing
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Blue lines use the default f = 2/3, red lines use f = 0.1

f is the ‘smoother span’ — the proportion of points in the plot that influence the smooth at each value.

Larger values give more smoothness.
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Pairwise scatter plots
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Coplot of Ozone against Temp given Wind and Solar.R grouped
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